e01 – Interpolation

NAG C Library Function Document

nag 2d shep eval (e01shc)

1 Purpose

nag_2d_shep_eval (e01shc) evaluates the two-dimensional interpolating function generated by nag 2d shep interp (e01sgc) and its first partial derivatives.

2 Specification

```
\label{eq:simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simp
```

3 Description

nag_2d_shep_eval (e01shc) takes as input the interpolant Q(x,y) of a set of scattered data points (x_r, y_r, f_r) , for r = 1, 2, ..., m, as computed by nag_2d_shep_interp (e01sgc), and evaluates the interpolant and its first partial derivatives at the set of points (u_i, v_i) , for i = 1, 2, ..., n.

nag 2d shep eval (e01shc) must only be called after a call to nag 2d shep interp (e01sgc).

This function is derived from the function QS2GRD described by Renka (1988a).

4 References

Renka R J (1988a) Algorithm 660: QSHEP2D: Quadratic Shepard method for bivariate interpolation of scattered data *ACM Trans. Math. Software* **14** 149–150

5 Arguments

 $\begin{array}{lll} 1: & \textbf{m} - \text{Integer} & & \textit{Input} \\ 2: & \textbf{x}[\textbf{m}] - \text{const double} & & \textit{Input} \\ 3: & \textbf{y}[\textbf{m}] - \text{const double} & & & \textit{Input} \\ 4: & \textbf{f}[\textbf{m}] - \text{const double} & & & \textit{Input} \end{array}$

On entry: \mathbf{m} , \mathbf{x} , \mathbf{y} and \mathbf{f} must be the same values as were supplied in the preceding call to nag 2d shep interp (e01sgc).

5: iq[dim] - const Integer

Input

Note: the dimension, dim, of the array iq must be at least $2 \times m + 1$.

On entry: must be unchanged from the value returned from a previous call to nag_2d_shep_interp (e01sgc).

6: $\mathbf{rq}[dim]$ – const double

Input

Note: the dimension, dim, of the array rq must be at least $6 \times m + 5$.

On entry: must be unchanged from the value returned from a previous call to nag_2d_shep_interp (e01sgc).

[NP3660/8] e01shc.1

7: \mathbf{n} - Integer Input

On entry: n, the number of evaluation points.

Constraint: $\mathbf{n} \geq 1$.

8: $\mathbf{u}[\mathbf{n}]$ – const double

Input

9: $\mathbf{v}[\mathbf{n}]$ – const double

Input

On entry: the evaluation points (u_i, v_i) , for i = 1, 2, ..., n.

10: $\mathbf{q}[\mathbf{n}]$ – double

Output

On exit: the values of the interpolant at (u_i, v_i) , for i = 1, 2, ..., n. If any of these evaluation points lie outside the region of definition of the interpolant the corresponding entries in \mathbf{q} are set to the largest machine representable number (see nag_real_largest_number (X02ALC)), and nag_2d_shep_eval (e01shc) returns with **fail.code** = **NE_BAD_INTERPOLANT**.

11: $\mathbf{q}\mathbf{x}[\mathbf{n}]$ – double

Output

12: $\mathbf{qy}[\mathbf{n}]$ - double

Output

On exit: the values of the partial derivatives of the interpolant Q(x,y) at (u_i,v_i) , for $i=1,2,\ldots,n$. If any of these evaluation points lie outside the region of definition of the interpolant, the corresponding entries in $\mathbf{q}\mathbf{x}$ and $\mathbf{q}\mathbf{y}$ are set to the largest machine representable number (see nag_real_largest_number (X02ALC)), and nag_2d_shep_eval (e01shc) returns with $\mathbf{fail.code} = \mathbf{NE}_{\mathbf{B}}\mathbf{AD}_{\mathbf{I}}\mathbf{NTERPOLANT}$.

13: **fail** – NagError *

Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_BAD_INTERPOLANT

On entry, at least one evaluation point lies outside the region of definition of the interpolant. At all such points the corresponding values in \mathbf{q} , $\mathbf{q}\mathbf{x}$ and $\mathbf{q}\mathbf{y}$ have been set to nag_real_largest_number (X02ALC) = $\langle value \rangle$.

NE_BAD_PARAM

On entry, argument \(\frac{\cup value}{\cup} \) had an illegal value.

NE INT

```
On entry, \mathbf{m} = \langle value \rangle.
Constraint: \mathbf{m} \geq 6.
On entry, \mathbf{n} = \langle value \rangle.
Constraint: \mathbf{n} \geq 1.
```

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

NE INVALID ARRAY

On entry, values in **iq** appear to be invalid. Check that **iq** has not been corrupted between calls to nag 2d shep interp (e01sgc) and nag 2d shep eval (e01shc).

On entry, values in **rq** appear to be invalid. Check that **rq** has not been corrupted between calls to nag 2d shep_interp (e01sgc) and nag 2d shep_eval (e01shc).

e01shc.2 [NP3660/8]

e01 – Interpolation

7 Accuracy

Computational errors should be negligible in most practical situations.

8 Further Comments

The time taken for a call to $nag_2d_shep_eval$ (e01shc) will depend in general on the distribution of the data points. If x and y are approximately uniformly distributed, then the time taken should be only O(n). At worst O(mn) time will be required.

9 Example

See Section 9 of the document for nag_2d_shep_interp (e01sgc).

[NP3660/8] e01shc.3 (last)